Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Real-time systems are widely applied in different areas like autonomous vehicles, where safety is the key metric. However, on the FPGA platform, most of the prior accelerator frameworks omit discussing the schedulability in such real-time safety-critical systems, leaving deadlines unmet, which can lead to catastrophic system failures. To address this, we propose the ART framework, a hardware-software co-design approach that transforms baseline accelerators into “real-time guaranteed" accelerators. On the software side, ART performs schedulability analysis and preemption point placement, optimizing task scheduling to meet deadlines and enhance throughput. On the hardware side, ART integrates the Global Earliest Deadline First (GEDF) scheduling algorithm, implements preemption, and conducts source code transformation to transform baseline HLS-based accelerators into designs targeted for real-time systems capable of saving and resuming tasks. ART also includes integration, debugging, and testing tools for full-system implementation. We demonstrate the methodology of ART on two kinds of popular accelerator models and evaluate on AMD Versal VCK190 platform, where ART meets schedulability requirements that baseline accelerators fail. ART is lightweight, utilizing <0.5% resources. With about 100 lines of user input, ART generates about 2.5k lines of accelerator code, making it a push-button solution.more » « lessFree, publicly-accessible full text available June 29, 2026
-
FPGA-based edge servers are used in many applications in smart cities, hospitals, retail, etc. Equipped with heterogeneous FPGA-based accelerator cards, the servers can be implemented with multiple tasks including efficient video prepossessing, machine learning algorithm acceleration, etc. These servers are required to implement inference during the daytime while re-training the model during the night to adapt to new environments, domains, or new users. During the re-training, conventionally, the incoming data are transmitted to the cloud, and then the updated machine learning models will be transferred back to the edge server. Such a process is inefficient and cannot protect users’ privacy, so it is desirable for the models to be directly trained on the edge servers. Deploying convolutional neural network (CNN) training on heterogeneous resource-constrained FPGAs is challenging since it needs to consider both the complex data dependency of the training process and the communication bottleneck among different FPGAs. Previous multi-accelerator training algorithms select optimal scheduling strategies for data parallelism, tensor parallelism, and pipeline parallelism. However, pipeline parallelism cannot deal with batch normalization (BN) which is an essential CNN operator, while purely applying data parallelism and tensor parallelism suffers from resource under-utilization and intensive communication costs. In this work, we propose MTrain, a novel multi-accelerator training scheduling strategy that transfers the training process into a multi-branch workflow, thus independent sub-operations of different branches are executed on different training accelerators in parallelism for better utilization and reduced communication overhead. Experimental results show that we can achieve efficient CNN training on heterogeneous FPGA-based edge servers with 1.07x-2.21x speedup under 15 GB/s peer-to-peer bandwidth compared to the state-of-the-art work.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available February 27, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
DNNs are rapidly evolving from streamlined singlemodality single-task (SMST) to multi-modality multi-task (MMMT) with large variations for different layers and complex data dependencies among layers. To support such models, hardware systems also evolved to be heterogeneous. The heterogeneous system comes from the prevailing trend to integrate diverse accelerators into the system for lower latency. FPGAs have high computation density and communication bandwidth and are configurable to be deployed with different designs of accelerators, which are widely used for various machinelearning applications. However, scaling from SMST to MMMT on heterogeneous FPGAs is challenging since MMMT has much larger layer variations, a massive number of layers, and complex data dependency among different backbones. Previous mapping algorithms are either inefficient or over-simplified which makes them impractical in general scenarios. In this work, we propose CHEF to enable efficient implementation of MMMT models in realistic heterogeneous FPGA clusters, i.e. deploying heterogeneous accelerators on heterogeneous FPGAs (A2F) and mapping the heterogeneous DNNs on the deployed heterogeneous accelerators (M2A). We propose CHEF-A2F, a two-stage accelerators-toFPGAs deployment approach to co-optimize hardware deployment and accelerator mapping. In addition, we propose CHEFM2A, which can support general and practical cases compared to previous mapping algorithms. To the best of our knowledge, this is the first attempt to implement MMMT models in real heterogeneous FPGA clusters. Experimental results show that the latency obtained with CHEF is near-optimal while the search time is 10000X less than exhaustively searching the optimal solution.more » « less
-
Free, publicly-accessible full text available November 1, 2025
-
While Vision Transformers (ViTs) have shown consistent progress in computer vision, deploying them for real-time decision-making scenarios (< 1 ms) is challenging. Current computing platforms like CPUs, GPUs, or FPGA-based solutions struggle to meet this deterministic low-latency real-time requirement, even with quantized ViT models. Some approaches use pruning or sparsity to reduce model size and latency, but this often results in accuracy loss. To address the aforementioned constraints, in this work, we propose EQ-ViT, an end-to-end acceleration framework with novel algorithm and architecture co-design features to enable real-time ViT acceleration on AMD Versal Adaptive Compute Acceleration Platform (ACAP). The contributions are four-fold. First, we perform in-depth kernel- level performance profiling & analysis and explain the bottlenecks for existing acceleration solutions on GPU, FPGA, and ACAP. Second, on the hardware level, we introduce a new spatial and heterogeneous accelerator architecture, EQ-ViT architec- ture. This architecture leverages the heterogeneous features of ACAP, where both FPGA and artificial intelligence engines (AIEs) coexist on the same system-on-chip (SoC). Third, On the algorithm level, we create a comprehensive quantization-aware training strategy, EQ-ViT algorithm. This strategy concurrently quantizes both weights and activations into 8-bit integers, aiming to improve accuracy rather than compromise it during quanti- zation. Notably, the method also quantizes nonlinear functions for efficient hardware implementation. Fourth, we design EQ- ViT automation framework to implement the EQ-ViT architec- ture for four different ViT applications on the AMD Versal ACAP VCK190 board, achieving accuracy improvement with 2.4%, and average speedups of 315.0x, 3.39x, 3.38x, 14.92x, 59.5x, 13.1x over computing solutions of Intel Xeon 8375C vCPU, Nvidia A10G, A100, Jetson AGX Orin GPUs, and AMD ZCU102, U250 FPGAs. The energy efficiency gains are 62.2x, 15.33x, 12.82x, 13.31x, 13.5x, 21.9x.more » « less
An official website of the United States government

Full Text Available